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Abstract. The processes of magnetization of ferrimagnetic Heisenberg chains of alternating spins
are studied theoretically. Size-scaling analysis with the exact diagonalization of finite systems for
(S, s) = (3/2, 1) and (2, 1) indicates a multi-plateau structure in the ground-state magnetization
curve for S and s > 1/2. The first plateau in the spontaneous magnetization can be explained
classically: as originating from the Ising gap. In contrast, the second and higher ones must be
originating from the quantization of the magnetization. It is also found that all of the 2s plateaux,
both classical and quantum ones, appear even in the isotropic case with no bond alternation.

1. Introduction

Alternating spin chains with antiferromagnetic interactions are currently attracting a lot of
attention. The optical mode of the low-lying excitation indicates that they behave like gapped
antiferromagnets, while they also exhibit a ferromagnetic aspect characterized by a spontaneous
magnetization. The coexistence of the two aspects gives rise to various interesting crossover
phenomena at low temperatures (Yamamoto 2000). However, few quantum aspects have
ever been reported on for these systems. Hence we consider an interesting phenomenon
caused by a quantum mechanism, called quantization of magnetization, in the framework
of quantum ferrimagnetic chains. This would be observed as a plateau in the ground-
state magnetization curve. Recently, many theoretical (Oshikawa et al 1997, Totsuka 1998,
Tonegawa et al 1996, Cabra et al 1997, Cabra and Grynberg 1999, Sakai and Takahashi
1998) and experimental (Narumi et al 1998, Shiramura et al 1998) studies have suggested the
realization of magnetization plateaux in various systems.

Previous works (Yamamoto and Sakai 1999, Sakai and Yamamoto 1999) by the present
authors indicated an important role for quantum fluctuation in stabilizing the plateau against
planar anisotropy in the ferrimagnetic chain. This results in the plateau existing even in theXY
model of the mixed spins 1 and 1/2. On the other hand, the classical mixed-spin systems have
the same plateau in the isotropic case. This implies that the plateau was originally produced by
a classical mechanism, although it is stabilized by a quantum effect. Thus it is difficult to say
whether the plateau symbolizes the quantum nature of the ferrimagnetic chains. In the present
paper, other plateaux, essentially based on a quantum mechanism, are revealed to coexist with
the above-mentioned classical plateau, when both spins are larger than 1/2.

0953-8984/00/479787+11$30.00 © 2000 IOP Publishing Ltd 9787



9788 T Sakai and S Yamamoto

2. Quantum and classical plateaux

A recent exact treatment (Oshikawa et al 1997) for general quantum spin chains suggested that
a magnetization plateau can appear as a result of the quantization of the magnetization under
the condition

Sunit −m = integer (1)

where Sunit and m are the total spin and magnetization per unit cell. Note that relation (1) is
only a necessary condition. Thus it does not guarantee the existence of the plateau nor specify
any mechanism of formation. Condition (1) is still valid for mixed-spin chains of spins S and
s (S > s), described by the Hamiltonian

H =
N∑

j=1

[
(1 + δ)(Sj · sj )α + (1 − δ)(sj · Sj+1)α −H(Szj + szj )

]
(2)

with (S · s)α = Sxsx + Sysy + αSzsz. In the isotropic case (α = 1) with no bond
alternation (δ = 0), the system has a spontaneous magnetization ms ≡ S − s. Because
of the antiferromagnetic gap, the ground state with magnetization ms is so stable against the
excitation increasing m that a magnetization plateau appears at m = ms (Kuramoto 1998).
Previous works (Yamamoto and Sakai 1999, Sakai and Yamamoto 1999) on the most quantized
system, (S, s) = (1, 1/2), suggested that the quantum fluctuation stabilizes the plateau against
XY -like anisotropy (α < 1) and that the plateau phase extends to the Kosterlitz–Thouless phase
boundary in the ferromagnetic region (α < 0). However, this plateau phase also includes the
Ising limit (α → ∞) without any other boundaries. Thus it is difficult to establish that
certain effects on the plateau formation are quantum effects, because they cannot be clearly
distinguished from those of the Ising gap resulting from a classical mechanism. In fact,
the classical spin (vector) model with the same magnitudes (S, s) = (1, 1/2), described by
the same Heisenberg Hamiltonian (2), also has a plateau at m = ms for α = 0. Thus
the plateau at ms could be called a classical plateau. On the other hand, the condition
of quantization (1) suggests that some other plateaux can appear at higher magnetizations
m = S − s + 1, S − s + 2, . . . , S + s − 1 for S > s > 1/2. These higher plateaux can never
be explained by any classical mechanisms, because they cannot appear in the Ising model or
classical Heisenberg model. Thus they should be called quantum plateaux, if they do in fact
appear. In the following sections, we perform some theoretical analyses for the systems with
(S, s) = (3/2, 1) and (2, 1) to establish the coexistence of the quantum and classical plateaux
in the case of S > s > 1/2.

3. Low-lying excitations

The optical mode of the low-lying excitations characterizes the features of the initial plateau at
ms . In figure 1 we show the excitation spectra of the systems (a) (3/2, 1) and (b) (2, 1) forα = 1
and δ = 0, derived by three methods: quantum Monte Carlo (QMC) simulation; modified spin-
wave theory; and perturbation from the decoupled dimer. The first one gives the most precise
results and the last one is based on the dimer state described as

∏
j (A

†
j )
S−s(A†

j b
†
j −B

†
j a

†
j )

2s |0〉,
making use of the Schwinger boson representation:

S+
j = A

†
jBj Szj = 1

2
(A

†
jAj − B

†
j Bj )

s+
j = a

†
j bj szj = 1

2
(a

†
j aj − b

†
j bj ).

(3)
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Figure 1. Low-lying excitation spectra calculated by quantum Monte Carlo (QMC) simulation,
from spin-wave theory and by perturbation from the decoupled dimer for (a) (3/2, 1) and (b) (2, 1).

The excitation spectrum of each system has two branches characterizing the ferromagnetic
(lower) and antiferromagnetic (upper) features, as well as the system (1, 1/2) itself. The
calculated curves suggest that the spin wave is more suitable than the decoupled dimer for
describing the behaviour of the optical branch around its bottom (k = 0). This implies that the
classical picture (spin-wave excitation from the Néel order) is more suitable than the quantum
one (dimer-breaking excitation) for explaining the origin of the initial plateau, as expected
from the above argument.

4. The variational approach

According to the condition of quantization (1), the mixed-spin chains (3/2, 1) and (2, 1) may
have two plateaux atm = ms andms + 1. In order to characterize these plateaux, we introduce
a variational wave function for the ground state of the model (2) as follows:

|g〉 = cN

N∏

j=1

(A
†
j )

2S(b
†
j )

2s |0〉 +
2s∑

l=0

c
(l)
VB

N∏

j=1

(A
†
j )

2S−l(a†
j )

2s−l(A†
j b

†
j − B

†
j a

†
j )
l|0〉 (4)

where cN and c(l)VB are the mixing coefficients. Using the variational wave function, the ground-
state phase diagram in theH–δ plane is obtained, as shown in figures 2(a) and 2(b) for (3/2, 1)
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Figure 2. The variational ground-state phase diagrams in the δ–H plane with α = 1 for (a) (3/2, 1)
and (b) (2, 1). The phases are denoted as follows: N: Néel; DBD: double-bond dimer; SBD: single-
bond dimer; and S: saturation.

and (2, 1), respectively, where we restrict consideration to the Heisenberg point (α = 1). In
the first step of the magnetization process for each system, there exists a crossover point δc
between the Néel (N) and double-bond dimer (DBD) states. In contrast, the second step toward
saturation (S) is always a single-bond dimer (SBD) state. These two steps before saturation
is reached are expected to characterize the two plateaux. Thus the first plateau should be
based on the classical Néel order, while the second one should be based on the quantum
valence-bond-solid state, as long as we consider the case of small δ.

5. Phase diagrams

In order to confirm the coexistence of the two plateaux even for α = 1 and δ = 0, we perform
a size-scaling analysis with the exact diagonalization of finite systems up to N = 12 to obtain
the phase diagrams in the δ–α plane. E(N,M) denotes the lowest energy in the subspace
with a fixed magnetization M for the Hamiltonian (2) without the Zeeman term. The upper
and lower bounds of the external field which induces the ground-state magnetization M are
expressed as H±(N,M) = ±E(N,M ± 1) ∓ E(N,M). The length of the plateau with the
unit-cell magnetization m ≡ M/N is obtained as �N(m) = H+(N,M) − H−(N,M). The
quantity �N(m) also corresponds to the sum of the two excitation gaps for increasing and
reducing the magnetization (Sakai and Takahashi 1998). Thus the scaled quantity N�N(m)

is a good probe of the plateau. The lack of size dependence has the result that the system is
gapless. The scaled quantity for the system (3/2, 1) is shown as a function of α for δ = 0 at
(a) m = 1/2 and (b) m = 3/2 in figure 3. Figure 3(a) clearly shows that the opening plateau
at around α = 1 vanishes at some critical value αc for m = 1/2 and that there is a gapless
phase in the region of α < αc. The scaled gap in figure 3(b) also indicates the existence of the
second plateau around α = 1, although the size dependence is much smaller than that of the
first plateau. This implies that the second plateau is much smaller than the first one.

To investigate the critical properties around αc, we use the size-scaling formula based on
conformal field theory (Cardy 1984, Blöte et al 1986, Affleck 1986):

1

N
E(N,M) ∼ ε(m)− πvsc

6N2
(5)

and

�N(m) ∼ πvsη

N
(6)
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Figure 3. The scaled quantity N�N(m) versus α at m = 1/2 (a) and m = 3/2 (b) in the case of
(S, s) = (3/2, 1).

with the following notation: ε(m) is the ground-state energy of the bulk system; vs is the
sound velocity derived from the derivative of the dispersion curve at k = 0; c is the central
charge; η is the critical exponent defined by the spin-correlation function 〈s̃x0 s̃xr 〉 ∼ r−η, where
s̃i is some relevant spin operator. These equations are valid at gapless points. The values of c
and η calculated for the systems (3/2, 1) and (2, 1) at m = ms and m = ms + 1 indicate the
following properties: as α decreases from 1 with fixed δ, the first and second plateaux vanish
at the different Kosterlitz–Thouless critical points αc1 and αc2, respectively, where η is 1/4 in
both cases; the gapless spin-fluid phase characterized by c = 1 lies in the region α < αc1

(αc2) at m = ms (m = ms + 1). The universal features of the phase boundaries of the two
plateaux are the same as those of the unique plateau of the system (1, 1/2) (Yamamoto and
Sakai 1999, Sakai and Yamamoto 1999). Thus we determine that the gapless-plateau phase
boundary has η = 1/4 for both plateaux. The thus-obtained phase boundaries for the first
and second plateaux are shown together as solid lines in figures 4(a) and 4(b) for the systems
(3/2, 1) and (2, 1), respectively. The phase diagrams obviously indicate the coexistence of the
first (classical) and second (quantum) plateaux even at the most symmetric point (α = 1 and
δ = 0). They also exhibit an interesting feature: the quantum plateau phase is larger than the
classical one (αc1 � αc2 independently of δ). This implies that the quantum plateau is more
stable than the classical one against planar anisotropy.

So slight a size dependence of the scaled quantity N�N(m) for the second plateau as that
shown in figure 3(b) might make us doubt its existence for α = 1 and δ = 0. Thus we perform
another type of analysis, called level spectroscopy (Okamoto and Nomura 1992, Nomura
1995), to convince ourselves of the existence of the second plateau. This type of analysis is
one of the most precise methods for estimating the Kosterlitz–Thouless phase boundary. Since
the method detects the boundary as a level crossing point for the two relevant excitation gaps
with the same scaling dimension, the result does not suffer from the dominant logarithmic
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Figure 4. The ground-state phase diagrams in the α–δ plane for (a) (3/2, 1) and (b) (2, 1). Solid
lines are the phase boundaries determined for η = 1/4. Dashed lines are the boundaries of the
second plateaux determined by level spectroscopy. The small difference between the two sets of
results for the second plateaux is due to the logarithmic size correction which should appear in the
former method.

size correction, which is quite serious for the Kosterlitz–Thouless transition. For the second
plateau at m = S − s + 1, the two relevant gaps are given by

�0 ≡ E2(L,M2)− E(L,M2) (7)

�4 ≡ [E(L,M2 + 4) + E(L,M2 − 4)− 2E(L,M2)]/2 (8)

whereE2(L,M) is the second eigenvalue in the same subspace asE(L,M) andM2 is defined
asM2 ≡ (S− s + 1)N . The two excitations have the common scaling dimension 2. The values
of�0 and�4 calculated for the system (3/2, 1) for δ = 0 are plotted versus α in figure 5. This
suggests that the phase boundary is easily determined as a crossing point, almost independently
of the system size. The thus-obtained boundaries for the second plateaux are shown as dashed
curves in figures 4(a) and 4(b). The results show a little deviation from the boundaries for
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Figure 5. �0 and �4 for the system (3/2, 1) with δ = 0 versus α. This indicates that the crossing
point of the two gaps is almost independent of the system size.

η = 1/4, because the latter includes the logarithmic size correction. Nonetheless they lead
to the same conclusion: the coexistence of the classical and quantum plateaux for α = 1 and
δ = 0.

The Néel–dimer crossover point in the first plateau indicated by the variational method in
the previous section is not detected as any phase boundary by these numerical analyses. This
suggests that the Néel and dimer pictures cannot be distinguished clearly for the first plateau.
In fact it is trivially revealed that in the δ–α phase diagram atm = ms the isotropic dimer point
(α = 1 and δ = 1) is connected to the Ising limit (α → ∞ and δ = 0) via the Ising dimer
limit (α → ∞ and δ = 1) through no phase transition or crossover. This implies that the first
plateau always has an aspect of the Ising gap even for large δ.

6. The magnetization curve

Finally we present the ground-state magnetization curve in several cases for the systems
(3/2, 1) and (2, 1). The curve is given by extrapolating H±(N,M) to the thermodynamic
limit using size scaling (Sakai and Takahashi 1998) based on conformal field theory at gapless
points and the Shanks transformation for plateaux. We show only the results of a suitable
polynomial fitting to the thus-obtained points, in figures 6 (δ = 0) and 7 (δ = 0.4), where
the labels (a) and (b) indicate the systems (3/2, 1) and (2, 1), respectively. They show the
coexistence of the classical and quantum plateaux at the Heisenberg point. These results
also explain the above-mentioned feature: the quantum plateau is smaller at the Heisenberg
point, but more stable against the XY -like anisotropy, than the classical one. Therefore, if
these systems lose a plateau due to the anisotropy, only the quantum one will survive. In
order to clarify the difference in the mechanism of gap formation between the first and second
plateaux, we also present the magnetization curves of the classical Heisenberg spin systems
described by the same Hamiltonian (2) with the same magnitudes (S, s) = (3/2, 1) and (2, 1)
in figures 8(a) and 8(b), respectively. (The results are independent of δ.) The classical systems
clearly have the first plateau in the isotropic case, while there is no plateau corresponding to the
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Figure 6. The ground-state magnetization curves of the quantum system with δ = 0 at various
values of α for (a) (3/2, 1) and (b) (2, 1).

second one. This also supports the assertion of a quantum nature of the second plateau. These
plateaux of the classical systems vanish even for slight anisotropy: αc = 0.980 and 0.943 for
(S, s) = (3/2, 1) and (2, 1), respectively. In comparison with these critical values, the phase
boundaries in the quantum systems in figures 4(a) and 4(b) imply that quantum fluctuation
stabilizes even the first plateau. Thus, in general, the quantum effect is expected to toughen
every field-induced gap against planar anisotropy. Nevertheless, the first and second plateaux
should be distinguished, because the former appears even in the classical limit, while the latter
does not exist until the spin is quantized.

7. Concluding remarks

The above investigations indicate the coexistence of classical and quantum plateaux in
the ground-state magnetization curve for the mixed-spin chains (3/2, 1) and (2, 1). This
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Figure 7. The ground-state magnetization curves of the quantum system with δ = 0.4 at various
values of α for (a) (3/2, 1) and (b) (2, 1).

conclusion is easily generalized for (S, s) (S > s > 1/2); the magnetization curve has 2s
plateaux and only the initial one is based on a classical mechanism, while the others originate
from quantum correlations.

In most previous works on the magnetization plateau, the gap formation was based on bond
polymerization (Totsuka 1998, Tonegawa et al 1996, Cabra et al 1997, Cabra and Grynberg
1999). In contrast, the present proposal for the plateau for ferrimagnetic chains is a pioneering
attempt to explore a novel mechanism for producing the field-induced gap associated with spin
polymerization. Bimetallic chains such as MM′(pbaOH)(H2O)3·nH2O (Kahn 1987, Kahn
et al 1995) are good candidates for realizing spin polymerization. Unfortunately, most of
them have M′ = Cu—that is, s = 1/2. In fact, a few compounds with other metals have
also been synthesized—for example, MM′(EDTA)·6H2O (MM′ = CoNi, MnCo and MnNi).
However, the case of MM′ = CoNi yields (S, s) = (1(Ni), 1/2(Co)) (Drillon et al 1985)
and MnCo has a large Ising-like anisotropy (Drillon et al 1986). Thus they do not provide
a suitable framework for searching for a quantum plateau. Among the series of bimetallic
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Figure 8. The ground-state magnetization curves of the classical system at various values of α for
(a) (3/2, 1) and (b) (2, 1).

chains, the most suitable compound might be MnNi(EDTA)·6H2O, which is well described
by the 1D spin-alternating Heisenberg model for (5/2, 1) (Drillon et al 1986). Magnetization
measurements on this compound would be interesting for investigating a possible quantum
plateau at m = 5/2, as well as the classical one at m = 3/2.

One of the most important findings in the present work is the coexistence of the quantum
and classical plateaux even at the most symmetric point (α = 1 and δ = 0). In order to
examine this feature, compounds consisting of metals and stable organic radicals (Caneschi
et al 1989a, b, Markosyan et al 1998) might provide a more suitable framework—because the
organic radicals lead to entirely isotropic spin systems—than the bimetallic chains with their
inevitable Ising-like anisotropy. The metal–radical complex also has a lot of variations. The
recently synthesized one {Mn(hfac)2}3(3R)2 (Markosyan et al 1998) has been investigated
with a view to realizing the (5/2, 3/2) spin chain. We hope that the present calculations will
stimulate not only further theoretical investigations, but also experimental explorations into
the magnetization plateaux in ferrimagnets considered as spin-polymerized materials.
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Blöte H W, Cardy J L and Nightingale M P 1986 Phys. Rev. Lett. 56 742
Cabra D C and Grynberg M D 1999 Phys. Rev. Lett. 82 1768
Cabra D C, Honecker A and Pujol P 1997 Phys. Rev. Lett. 79 5126
Caneschi A, Gatteschi, Renard J-P, D, Ray P and Sessoli R 1989a Inorg. Chem. 28 1976
Caneschi A, Gatteschi, Renard J-P, D, Ray P and Sessoli R 1989b Inorg. Chem. 28 2940
Cardy J L 1984 J. Phys. A: Math. Gen. 17 L385
Drillon M, Coronado E, Beltran D, Curely J, Georges R, Nugteren P R, De Jongh L J and Genicon J L 1986 J. Magn.

Magn. Mater. 54–57 1507
Drillon M, Coronado E, Beltran D and Georges R 1985 J. Appl. Phys. 57 3353
Kahn O 1987 Struct. Bonding 68 89
Kahn O, Pei Y and Journaux Y 1995 Inorganic Materials ed D W Bruce and D O’Hare (New York: Wiley) p 95
Kuramoto T 1998 J. Phys. Soc. Japan 67 1762
Markosyan A S, Hayamizu T, Iwamura H and Inoue K 1998 J. Phys.: Condens. Matter 10 2323
Narumi Y, Hagiwara M, Sato R, Kindo K, Nakano H and Takahashi M 1998 Physica 246+247 509
Nomura K 1995 J. Phys. A: Math. Gen. 28 5451
Okamoto K and Nomura K 1992 Phys. Lett. A 169 433
Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 1984
Sakai T and Takahashi M 1998 Phys. Rev. B 57 3201
Sakai T and Yamamoto S 1999 Phys. Rev. B 60 4053
Shiramura W, Takatsu K, Kurniawan B, Tanaka H, Uekusa H, Ohashi Y, Takizawa K, Mitamura and Goto T 1998

J. Phys. Soc. Japan 67 1548
Tonegawa T, Nakao T and Kaburagi M 1996 J. Phys. Soc. Japan 65 3317
Totsuka K 1998 Phys. Rev. B 57 3454
Yamamoto S 2000 Phys. Rev. B 61 842 and references therein
Yamamoto S and Sakai T 1999 J. Phys.: Condens. Matter 11 5175


